OVERVIEW: ENVIRONMENTAL FATE & TRANSPORT

U.S. EPA OFFICE OF PESTICIDE PROGRAMS
ENVIRONMENTAL FATE AND EFFECTS DIVISION

MAY 16, 2017

ROCHELLE F. H. BOHATY, PhD

SENIOR SCIENTIST

Pesticide Dissipation Conceptual Model

- Driving Factors
 - Application/Agronomic Practices
 - rate, method, timing
 - Environmental Conditions
 - · weather, soil
 - Pesticide Properties

Pesticide Properties

- CFR 40 part 158
 - List required studies by use pattern and test material
 - Product Chemistry
 - identity and composition
 - physical and chemical properties
 - Environmental Fate
 - degradation studies
 - metabolism studies
 - mobility studies
 - dissipation studies
 - monitoring studies
- Purpose
 - Qualitative fate assessment
 - Identify transformation products (residues of concern)
 - Model inputs

Product Chemistry

- Identity and composition
- Physical and chemical properties
 - Partition coefficient
 - Water solubility
 - Vapor pressure

Environmental Fate

- Degradation studies
 - Hydrolysis
 - Photolysis
 - · aqueous, soil, air
- Metabolism studies
 - Soil aerobic and anaerobic
 - Aquatic aerobic and anaerobic
- Mobility studies
 - Leaching
 - Volatility laboratory and field
- Dissipation studies
 - Terrestrial and Aquatic
- Monitoring studies
 - Groundwater and Surface Water*

Study	Guideline Number
Hydrolysis	835.2120
Aquatic Photolysis	835.2240
Soil Photolysis	835.2410
Air Photolysis	835.2370
Aerobic Soil (ASM)	835.4100
Anaerobic Soil	835.4200
Aerobic Aquatic	835.4300
Anaerobic Aquatic	835.4400
Leaching and Adsorption/ desorption	835.1230 835.1240
Laboratory Volatility	835.1410
Field Volatility	835.8100
Terrestrial Field Dissipation (TFD)	835.6100
Aquatic Field Dissipation	835.6200

Degradation Studies: Hydrolysis

- Estimate the rate of Abiotic degradation of compounds in water as a function of pH; identify and measure degradates
- Study design
 - 30 day study in the dark
 - compound is added to water, minimal co-solvents
 - carried out at 3 pH values, 5, 7, & 9 and 3 temperatures 10, 25, 50
 - typically at least 5 measurements
- Endpoints
 - hydrolysis half-lives
 - identify degradates and maximum concentrations
- Utility in risk assessment
 - inputs into aquatic models
 - used to estimate degradation in water bodies and aquifers

Degradation Studies: Photolysis in Water

- Estimate the rate of abiotic degradation of compounds in water as impacted by light; identify and measure degradates
- Study design
 - 30 day study
 - compound is added to water with minimal co-solvents
 - at least 5 concentration measurements over time
 - uses natural sunlight or simulates natural light
 - must include a dark control
- Endpoints
 - photolysis half-lives (difference in rate constants between the light and dark control)
 - identify degradates and maximum concentrations
- Utility in risk assessment
 - inputs into PWC
 - used to estimate degradation in surface water (clear, shallow water bodies)
 - elucidate potential drinking water treatment effects

Photolysis in Soil

- Estimate the rate of abiotic degradation of compounds in soil as impacted by light; identify and measure degradates
- Study design
 - 30 day study

 - compound is applied to moist soil
 at least 5 concentration measurements over time
 - uses natural sunlight or simulates natural light
 - must include a dark control
- Endpoints
 - photolysis half-lives (difference in rate constants between the light and dark control)
 - identify degradates and maximum concentrations
- Utility in risk assessment
 - not routinely used in modeling
 - affects surface soils (upper 2 mm), in open canopy conditions. Most applicable to a scenario where a pesticide is applied pre-plant

Metabolism Studies: Soil

- Estimates the rate of biotic degradation of chemical in soil as impacted by microbes in soil under aerobic (with O₂) and anaerobic (without O₂) conditions
- Study design
 - 120 day study; (longer if half-life is not reached within 120 days)
 - Compound is applied to moist soil; must include 4 different soil series
 - At least 5 measurements over time
 - Degradate analysis is required for at least one soil
 - Conducted under dark conditions
 - Aerobic conducted with presence of atmospheric O₂
 - Anaerobic begins at aerobic conditions, must achieve and maintain anaerobic conditions (O₂ strictly excluded)
- Endpoints
 - half-lives reported for all 4 soils
 - identify degradates and maximum concentrations
- Utility in risk assessment
 - aerobic soil is a major input into aquatic exposure models
 One of the two most important fate inputs
 - anaerobic soil metabolism study is relevant only for flooded crops i.e.; rice, cranberries, watercress, etc.

Metabolism Studies: Aquatic

- Estimate the rate of biotic degradation of chemical in sediment and water column under aerobic (with O₂) and anaerobic (without O₂)
- Study design
 - 120 day study; (longer if half life is not reached within 120 days)
 - conducted under dark conditions
 - aerobic conducted with presence of atmospheric O₂
 - anaerobic begins at aerobic conditions, must achieve and maintain anaerobic conditions (O₂ strictly excluded)
 - compound is applied to a mixed water sediment system soil; must include 2 different sediments
 - at least 5 measurements overtime (two test systems pond, river)

Endpoints

- half-lives reported for all 2 test systems; degradate analysis is required in at least one soil
- identify degradates and maximum concentrations
- Utility in Risk Assessment
 - major input into aquatic water models (total system half-lives)
 - aerobic represents degradation in the water column
 - anaerobic represents degradation in sediment
 - Further characterize partitioning

Mobility Studies: Adsorption/Desorption (Batch Equilibrium)

- Determine how much of the active ingredient (or transformation product) sorbs to soil and how much stays in the water
- Study Design
 - Adsorption
 - Combine soil (sediment), pesticide, & water
 - At least 5 soils/sediments representative of agricultural use areas (one with low organic matter) are analyzed at a minimum of 5 concentrations.
 - Filter and measure concentration of pesticide in solution and on sediment
 - Desorption:
 - Add water to above system and repeat to determine how much active ingredient desorbs from soil
 - Endpoints
 - K_f = freundlich coefficient
 - 1/n = curvature parameter
 - K_{oc} = partition coefficient as a function of organic carbon content (not all chemicals have a K_{oc})
 - Utility in Risk Assessment
 - Critical parameter in water modeling, tells us whether a chemical is likely to bind to soils or will be mobile (transport to/through waterways)
 - C_s = K_f * C_{aq}^{1/n} or C_s = K_d* C_{aq};
 where C_s = concentration in soil, K_f = freundlich coefficient, C_{aq} = concentration in water, 1/n = curvature parameter, K_d = distribution coefficient

Food and Agriculture Organization of the United Nations (FAO) Classification System

K _{oc} (mL/g _{oc})	Mobility Classification
<10	Highly Mobile
10-100	Mobile
100-1000	Moderately Mobile
1000-10,000	Slightly Mobile
10,000-100,000	Hardly Mobile
>100,000	Immobile

Dissipation Studies

- Type
 - Terrestrial Field Dissipation

 - Aquatic Field Dissipation
 Forestry Field Dissipation
 Prospective Groundwater Monitoring
- Application of active ingredient to small plot fields representative of labeled use
- Study Design
 - 1 year study; active ingredient applied to a cropped and bare ground plot; applications should be according to label directions (i.e., maximum labeled rate)
 - Measure concentrations of major and toxic degradates identified in lab studies down the soil profile over time
 - May contain different modules (depending on conceptual model)
- **Endpoints**
 - Concentrations at depth (as deep as 3 feet)
 - Dissipation rate as a function of time
- Utility in Risk Assessment
 - Confirms conceptual model of fate and transport based on lab data
 - Measures leaching (mobility), measures volatility (if module is considered)
 - Can identify carryover/accumulation issues

Additional or Alternative Studies or Modules

- Field Volatility Study (flux study) measures dissipation through air via dissipation (especially useful for chemicals like the fumigants); does not include spray drift
- Long Term Field Dissipation Study longer duration than typical TFD study
- Non GLN runoff & pond studies measures concentration in runoff and ponds from runoff
- Spray (field) drift and laboratory droplet size

Locating Environmental Fate Data

- Example Assessment
 - https://www.regulations.gov/document?D=EPA-HQ-OPP-2015-0653-0437
- Contacts
 - https://www.epa.gov/pesticide-contacts

Chemical Classes

- Carbamates
- Neonicotinoids
- Organochlorines
- Organophosphates
- Pyrethrins & Pyrethroids
- Sulfonylureas
- Strobilurin
- Triazines
- Dinitroanilines
- Phenoxy
- Others...Glyphosate

Neonicotinoids

Active Ingredient	Chemical Structure	Solubility (mg/L)	Koc (mL/g)	Field Dissipation Half-life (days)	Aquatic Toxicity
Imidacloprid	O ₂ N, NH	514	moderately mobile	26-229	very highly
Clothianidin	CI N O ₂ N	327	mobile to moderately mobile	257-1,386	very highly
Thiamethoxam	N HN NH CI S O ₂ N	4,100	mobile to moderately mobile	5-100	practically non-toxic
Dinotefuran	CI S N N	39,830	highly mobile to mobile	19-65	practically non-toxic
	O ₂ N _s				

Neonicotinoids

- Use profile
 - Insecticides
 - Residential, Urban
 - Agriculture
- General toxicity profile
 - Low mammalian toxicity
 - High invertebrate toxicity including aquatic invertebrates
- Hot topic(s)
 - Bees
 - Re-registration

Neonicotinoids: Re-evaluation Timeline

2016

Imidacloprid preliminary pollinator assessment

2017

- Imidacloprid assessment for taxa other than pollinators posted, and will be released for comment
- Clothianidin, thiamethoxam, and dinotefuran preliminary pollinator assessments posted, and will be released for comment
- Imidacloprid, Clothianidin, thiamethoxam, and dinotefuran human health risk assessment
- Clothianidin, thiamethoxam, and dinotefuran draft risk assessment for taxa other than pollinators

2018

- All neonicotinoids: revised pollinator/ecological risk assessments
- All neonicotinoids: proposed interim registration review decisions 2018/2019
- All neonicotinoids: interim registration review decisions

Organophosphates

Active Ingredient	Chemical Structure	Solubility (mg/L)	Koc (mL/g)	Field Dissipation Half-life (days)	Aquatic Toxicity
chlorpyrifos	EtO P O N CI	1.18	Slightly Mobile	43	very highly
diazinon		60	Slightly Mobile	40	very highly
malathion	Eto N N Eto N	130	Slightly Mobile	9	very highly
methyl parathion	MeO S COOEt	55	Slightly Mobile	10	very highly
naled	MeO NO ₂	2,000	Moderately Mobile	1	very highly

Organophosphates

- Use Profile
 - Insecticides
 - Residential, Urban
 - Agricultural
- General toxicity profile
 - High toxicity to all taxa (exception: plants***)
- Hot topic(s)
 - Neurodevelopmental effects
 - Endangered species assessment
 - Re-registration

Pyrethrins/Pyrethroids

Active Ingredient	Chemical Structure	Solubility (mg/L)	Koc (mL/g)	Field Dissipation Half-life (days)	Aquatic Toxicity
Bifenthrin		0.0001	immobile	26	very highly
Cypermethrin	F CI P	0.004	hardly mobile	77	very highly
Esfenvalerate	CI CI O N	0.0002	slightly mobile	42	very highly
Permethrin	CI	0.006	immobile	42	very highly

Pyrethrins/Pyrethroids

- Use profile:
 - Insecticides
 - Residential Uses dogs, spot treatment
 - Agricultural Uses seed treatment, foliar broadcast, soil drench
- General toxicity profile
 - High toxicity to all taxa (exception: plants***)
- Hot topic(s)
 - Re-registration
 - Urban water contamination

Pyrethroid: Re-evaluation Timeline

2016

- bifenthrin, permethrin, deltamethrin, cyfluthrin, cypermethrin, fenpropathrin, esfenvalerate, and lambda-cyhalothrin assessment where published
 - Highlights
 - Down the drain
 - Outdoor Urban (turf, residential, nursery, structural pest control)
 - Agricultural uses
 - Mosquito Adulticide Use Assessment (deltamethrin, permethrin, pyrethrins)
 - Tier I honey bee assessment
 - Focused on aquatic organisms (fish, invertebrates)

2017

 Public comment period on previously published assessment – on going

Triazines

Active Ingredient	Chemical Structure	Solubility (mg/L)	Koc (mL/g)	Field Dissipation Half- life (days)	Aquatic Toxicity
Atrazine	CI	33	Moderately Mobile	173	high
Propazine	LI CI				
Simazine	H N H	6	Moderately Mobile	60	high
	CI				

Triazines

- Use profile:
 - Herbicides (one insecticide)
 - Agricultural Uses seed treatment, foliar broadcast, soil drench
- Hot topic(s)
 - Ecological risk
 - Aquatic plant community effects
 - Amphibian effects

Others

Active Ingredient	Chemical Structure	Solubility (mg/L)	Koc (mL/g)	Field Dissipation Half- life (days)	Aquatic Toxicity
Chlorthalonil	CI CI	0.8	slightly mobile	33-81	very high
2,4 D	CI CI N	6100	mobile		slightly toxic
Dicamba	CI O OH	8.6	moderately mobile	52	Moderately toxic
Glyphosate	OH OCH ₃	12000	157 (K _d) immobile	1.4-142	

Conclusions

- After application pesticides are transported and transformed (environmental dissipation)
- Chemical/physical properties of pesticides chemicals can and are used to predict environmental fate
- Environmental fate data inform:
 - Human health and environmental risk assessments
 - Monitoring program design
 - Enforcement
 - pesticide use/misuse investigations

QUESTIONS

Ecotoxicity Categories for Aquatic Organisms

Toxicity Category	Aquatic Organisms: Acute Concentration (mg/L)
very highly toxic	<0.1
highly toxic	0.1 - 1
moderately toxic	>1 - 10
slightly toxic	>10 - 100
practically nontoxic	>100

Neonicotinoids

Imidacloprid

- A preliminary pollinator-only analysis released January 2016.
- An aquatic risk assessment has been posted, and will be released for comment.
- Clothianidin and thiamethoxam
 - A preliminary pollinator risk assessment has been posted, and will be released for comment.
- Dinotefuran
 - A Tier 1 pollinator risk assessment has been posted, and will be released for comment.

Neonicotinoids: Preliminary Pollinator Risk Assessments

- Potential on-field risk from some use patterns appear to be low
 - Based on attractiveness and agronomic practices
 - Seed treatment uses
- Potential on-field risk from some use patterns remain uncertain: more data (expected in 2017), and further analysis will reduce these uncertainties.
 - Soil uses
- Potential on-field risk from some use patterns
- EPA intends to engage stakeholders to better inform its understanding of risks and benefits from uses that result in potential risks of concern